The time-domain Lippmann-Schwinger equation and convolution quadrature
نویسندگان
چکیده
منابع مشابه
The Time Domain Lippmann-Schwinger Equation and Convolution Quadrature
We consider time domain acoustic scattering from a penetrable medium with a variable sound speed. This problem can be reduced to solving a time domain volume Lippmann-Schwinger integral equation. Using convolution quadrature in time and trigonometric collocation in space we can compute an approximate solution. We prove that the time domain Lippmann-Schwinger equation has a unique solution and p...
متن کاملSparsifying Preconditioner for the Lippmann-Schwinger Equation
The Lippmann–Schwinger equation is an integral equation formulation for acoustic and electromagnetic scattering from an inhomogeneous medium and quantum scattering from a localized potential. We present the sparsifying preconditioner for accelerating the iterative solution of the Lippmann–Schwinger equation. This new preconditioner transforms the discretized Lippmann–Schwinger equation into spa...
متن کاملDirect solution of the three-dimensional Lippmann–Schwinger equation
A standard technique for solving three-dimensional momentum-space integral equations in scattering theory is their transformation into one-dimensional equations in terms of partial waves. However, for some scattering systems where a large number of partial waves contribute this technique is not efficient. In this work we explore the alternative approach of solving these equations directly witho...
متن کاملSparse Convolution Quadrature for Time Domain Boundary Integral Formulations of the Wave Equation
Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization. We introduce a simple a-priori cutoff strategy ...
متن کاملSparsify and sweep: an efficient preconditioner for the Lippmann-Schwinger equation
This paper presents an efficient preconditioner for the Lippmann-Schwinger equation that combines the ideas of the sparsifying and the sweeping preconditioners. Following first the idea of the sparsifying preconditioner, this new preconditioner starts by transforming the dense linear system of the Lippmann-Schwinger equation into a nearly sparse system. The key novelty is a newly designed perfe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Methods for Partial Differential Equations
سال: 2014
ISSN: 0749-159X
DOI: 10.1002/num.21921